Minimally Invasive Versus Open Repair for Acute Achilles Tendon Rupture

Meta-Analysis Showing Reduced Complications, with Similar Outcomes, After Minimally Invasive Surgery

Alberto Grassi, MD, Annunziato Amendola, MD, Kristian Samuelsson, MD, Eleonor Svantesson, MD, Matteo Romagnoli, MD, Alice Bondi, MD, Massimiliano Mosca, MD, and Stefano Zaffagnini, Prof

Investigation performed at the IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy

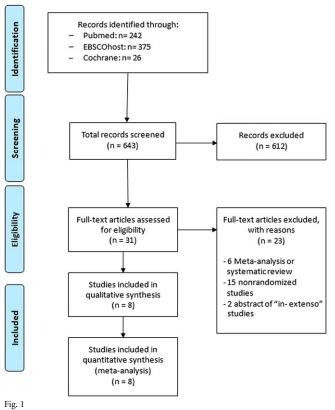
Background: There is no consensus on the optimal technique for repairing an acute Achilles tendon rupture. The purpose of this meta-analysis was to compare the complications, subjective outcomes, and functional results between minimally invasive surgery and open repair of an Achilles tendon rupture.

Methods: A systematic literature search of MEDLINE/PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), EBSCOhost, and ClinicalTrials.gov was performed. Eligible studies were randomized controlled trials (RCTs) comparing minimally invasive surgery and open repair of acute Achilles tendon ruptures. A meta-analysis was performed, while bias and the quality of the evidence were rated according to the Cochrane Database questionnaire and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines. The meta-analysis was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines.

Results: Eight studies, with 182 patients treated with minimally invasive surgery and 176 treated with open repair, were included. The meta-analysis showed a significantly decreased risk ratio (RR) of 0.21 (95% confidence interval [CI] = 0.10 to 0.40, p = 0.00001) for overall complications and 0.15 (95% CI = 0.05 to 0.46, p = 0.0009) for wound infection after minimally invasive surgery. Patients treated with minimally invasive surgery were more likely to report good or excellent subjective results (RR = 1.18, 95% CI = 1.04 to 1.33, p = 0.009). No differences between groups were found with respect to reruptures, sural nerve injury, return to preinjury activity level, time to return to work, or ankle range of motion. The overall quality of evidence was generally low because of a substantial risk of bias, heterogeneity, indirectness of outcome reporting, and evaluation of a limited number of patients.

Conclusions: There was a significantly decreased risk of postoperative complications, especially wound infection, when acute Achilles tendon rupture was treated with minimally invasive surgery compared with open surgery. Patients treated with minimally invasive surgery were significantly more likely to report a good or excellent subjective outcome. Current evidence is associated with high heterogeneity and a considerable risk of bias.

Level of Evidence: Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.


The treatment of Achilles tendon rupture is a source of controversy¹⁻⁴. The advocates of surgical repair emphasize potentially lower rerupture rates, superior functional results, and a shorter time to return to activity⁵⁻⁷, whereas those supporting nonsurgical treatment underline the fact that there are no surgical complications, such as postoperative infections, despite similar functional results⁵. However, when analyzing surgical treatment approaches, minimally invasive surgery and open repair of the tendon should be considered separately. It has been suggested that a percutaneous surgical approach, or minimally invasive surgery, reduces surgical exposure in order to minimize the risk of wound

Disclosure: None of the authors received funding for the production of the present manuscript, in any stages of its elaboration. On the **Disclosure** of **Potential Conflicts of Interest** forms, *which are provided with the online version of the article*, one or more of the authors checked "yes" to indicate that the author had a relevant financial relationship in the biomedical arena outside the submitted work (<u>http://links.lww.com/JBJS/</u>E945).

Study	y Details			Exclusion Criteria							
Author(s)	Year of Study	Study Design	Randomization	Age	Gap	Tear Location	Timing of Surgery After Injury	Comorbidities			
Schroeder et al. ²⁴	1997	RCT	NA	NA	NA	NA	NA	NA			
Majewski et al. ¹²	2000	RCT	NA	NA	>0.5 cm at 20° plantar flexion	Myotendinous junction, calcaneus avulsion	NA	Corticosteroids			
Lim et al. ¹⁰	2001	Quasi-RCT	Patient hospital number	NA	NA	NA	>7 days	Open or previous injuries			
Gigante et al. ⁹	2008	RCT	Casio calculator	<20 and >60 yr	NA	NA	NA	DM, RA, SLE, corticosteroids			
Aktas and Kocaoglu ²⁰	2009	RCT	NA	NA	NA	NA	NA	DM, immunosuppression, previous injuries			
Aviña Valencia and Guillén Alcalá MA ²¹	2009	RCT	NA	<18 and >50 yr	NA	>8 cm from calcaneus	>10 days	Chronic diseases			
Kołodziej et al. ²³	2013	RCT	Opaque envelopes	<18 yr	NA	Calcaneus avulsion	>7 days	Open injuries, DM, RA corticosteroids			
Karabinas et al. ²²	2014	Quasi-RCT	Order of presentation	NA	>3 cm	>6 cm from calcaneus	>2 days	NA			

*MIS = minimally invasive surgery, RCT = randomized controlled trial, Gap = distance between tendon stumps, NA = not assessed, DM = diabetes mellitus, RA = rheumatoid arthritis, and SLE = systemic lupus erythematosus. *Mean and standard deviation. *Mean with range in parentheses.

complications. However, this is a weaker repair construct that is technically more demanding to perform⁸ because of the limited direct visualization, which makes it more difficult to

PRISMA flow chart for study inclusion.

approximate the stump, and because of the risk of sural nerve injury.

Several studies that have compared minimally invasive surgery and open repair have had discordant results⁹⁻¹². Authors of meta-analyses on this topic have concluded that minimally invasive surgery reduces surgical complications without increasing the rerupture risk^{4,13}. However, functional outcomes, such as the time to return to work or rate of return to preinjury activity, have not been thoroughly investigated because of the limited number of randomized controlled trials (RCTs) on the subject. A recent systematic review of the results of 4 overlapping meta-analyses comparing minimally invasive surgery and open surgery inconsistently included only the same 6 original studies¹³, all published in 2009. The latest Cochrane Review¹⁴, published in 2010, evaluated only 4 RCTs, while a more recent meta-analysis¹⁵ expanded its evaluation to include 1 additional RCT. The low numbers of RCTs in these analyses have mostly been due to the searches being limited to the English-language literature and to publication status restrictions.

The aim of the present study was to perform an updated meta-analysis with a broad and comprehensive literature search to investigate the complications, subjective outcomes, and functional results after minimally invasive surgery and open repair of Achilles tendon rupture. The hypothesis was that minimally invasive surgery would be followed by a similar rerupture rate and functional and subjective outcomes compared with open repair, but with the advantage of a lower risk of surgical complications.

Materials and Methods

Literature Search

This meta-analysis was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis

TABLE I (continued)

No. of Dot		Maga	7a ()	
No. of Pat	Open	Mean A	Open	Follow-up (mo)
15	13	37.7	43.9	8
25	22	NA	NA	30
33 (19 M, 14 F)	33 (20 M, 13 F)	40.1	36.9	6
20	20	NA	NA	12
20 (18 M, 2 F)	20 (17 M, 3 F)	39.2	40.6	22.4
28	28	NA	NA	4
22	25	44.8 ± 9.2†	47.1 ± 13.3†	24
19 (15 M, 4 F)	15 (13 M, 2 F)	42 (25-58)†	40 (28-50)‡	20-22

(PRISMA) guidelines¹⁶. A systematic electronic search of PubMed/ MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), EBSCOhost, and ClinicalTrials.gov was performed in February 2017. The key words were "Achilles tendon," combined through the Boolean operator AND with "repair OR suture" and "mini-invasive OR minimally invasive OR percutaneous." Manual scanning of the reference lists of included articles and screening of the ePublication lists of the leading orthopaedic and sports medicine journals were done as well.

Article Selection

Eligible studies were RCTs comparing minimally invasive surgery and open surgical repair for acute Achilles tendon

Study Detail	s	Ν	/IS	Op	en	Rehabilitation	ı	Prophyla	vie
Author(s)	Year of Study	Technique	Suture Type	Technique	Suture Type	Immobilization Position (Duration in Weeks)	WB (Duration in Weeks)	Antibiotics	DVT
Schroeder et al. ²⁴	1997	Modified Ma and Griffith	NA	Kessler suture	NA	Plantar flexion (4), progression to neutral (4)	NA	NA	NA
Majewski et al. ¹²	2000	Ma and Griffith	NA	NA	NA	NA	NA	NA	NA
Lim et al. ¹⁰	2001	Modified Ma and Griffith	#1 absorbable	Kessler suture	#1 absorbable	Plantar flexion (4-6), neutral (6-8)	NA	No	NA
Gigante et al. ⁹	2008	Tenolig	NA	Kessler suture	#1-0 absorbable	MIS: plantar flexion (2), neutral (2); open: 30° plantar flexion (4), neutral (3)	MIS: no WB (2), progressive WB (4-5); open: NA	Yes	Yes
Aktas and Kocaoglu ²⁰	2009	Achillon	NA	Krackow suture	#2 nonabsorbable	Plantar flexion (6)	No WB (3), progressive WB (3)	Yes	Yes
Aviña Valencia and Guillén Alcalá MA ²¹	2009	Achillon	NA	End-to-end suture + plantaris augmentation	#1 absorbable	NA	NA	NA	NA
Kołodziej et al. ²³	2013	Achillon	NA	Krackow suture	Absorbable	20° plantar flexion (6)	No WB (6)	Yes	Yes
Karabinas et al. ²²	2014	Ma and Griffith + sural nerve identification	#1 nonabsorbable	Krackow suture	#1 nonabsorbable	Max. plantar flexion (3), progression to neutral (3-4)	No WB (3), progressive WB (3-4)	NA	NA

The Journal of Bone & Joint Surgery · JBJS.org Volume 100-A · Number 22 · November 21, 2018 MINIMALLY INVASIVE VERSUS OPEN REPAIR FOR ACUTE ACHILLES TENDON RUPTURE

Surgical Duration (min)

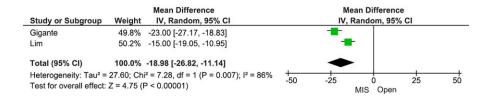


Fig. 2

Figs. 2 through 6 Forest plots. Each study is represented by a line indicating the CI; the squares on the lines represent the mean difference, risk difference, or risk ratio as indicated by the figure; and the black diamond at the bottom of the graph shows the average effect size of the studies. IV = inverse variance, M-H = Mantel-Haenszel, and df = degrees of freedom. **Fig. 2** Forest plot showing the mean duration (minutes) of the minimally invasive surgery (MIS) and open repairs.

rupture. Both published and unpublished studies in all languages were eligible. Biomechanical and in vitro studies were excluded. There were no criteria regarding the technique used in the surgical procedure, study sample size, or duration of follow-up.

Two of us (A.B. and M.R.) independently reviewed the title and abstract of each article identified by the literature search. The assessors were not blinded to the authors of the publications. The full text of an article was obtained and evaluated when eligibility could not be determined from the first screening. Any disagreements were addressed via a consensus

discussion between the reviewers, and a third reviewer was consulted if the disagreement could not be resolved.

Data Extraction and Synthesis

Data on patient demographics, surgical details, and rehabilitation were extracted. The outcomes that we evaluated, defined prior to the study start, were functional outcomes, defined as the American Orthopaedic Foot & Ankle Society (AOFAS) score¹⁷, ankle range of motion, subjective patient satisfaction (dichotomized into good/excellent versus fair/poor), return to preinjury activity, and time to return to work, as well as

						RR				I	RD				
		o. of ients					Heter	rogeneity				Hete	erogeneity		
Outcome	MIS	Open	No. of Studies	ES	95% CI	P Value	l² (%)	P Value	ES	95% CI	P Value	l² (%)	P Value	RRR (%)	NN
leruptures	182	176	8	0.64	0.11 to 3.77	0.62	0	0.76	0.00	-0.04 to 0.03	0.83	0	1.00	36	NA
otal other omplications	182	176	8	0.18	0.10 to 0.31	0.00001	14	0.32	-0.31	-0.38 to -0.24	0.00001	81	0.00001	82	4
Wound complications Infections	182	176	8	0.13	0.05 to 0.35	0.00001	0	0.96	-0.16	-0.25 to -0.07	0.0008	62	0.01	87	7
Total	182	176	8	0.15	0.05 to 0.46	0.0009	0	0.96	-0.11	-0.16 to -0.05	0.0001	44	0.09	85	1(
Superficial	182	176	8	0.17	0.05 to 0.64	0.0090	0	0.73	-0.07	-0.11 to -0.02	0.006	42	0.10	83	1
Deep	182	176	8	0.35	0.06 to 2.14	0.25	0	1.00	-0.02	-0.05 to 0.02	0.36	0	0.99	65	5
Delayed wound-healing	97	97	4	0.22	0.05 to 1.01	0.05	0	1.00	-0.07	-0.14 to -0.01	0.03	0	0.95	78	1
Adhesions	81	81	3	0.18	0.04 to 0.79	0.02	0	0.99	-0.11	-0.19 to -0.03	0.007	0	0.43	82	1
Keloids	57	60	2	0.27	0.03 to 2.33	0.23	0	0.86	-0.05	-0.12 to 0.02	0.17	0	0.54	73	2
Sural nerve problems	141	137	6	3.00	0.13 to 71.07	0.50	NA	NA	0.01	-0.03 to 0.04	0.70	0	0.99	-200	1
Pain/tendinitis	116	112	5	0.52	0.11 to 2.54	0.42	41	0.16	-0.06	-0.17 to 0.06	0.34	72	0.006	48	1
Ankle stiffness	45	42	2	0.33	0.11 to 1.01	0.05	0	1.00	-0.13	-0.36 to 0.10	0.28	68	0.08	67	
Deep venous thromboembolism	80	75	4	0.33	0.01 to 7.72	0.49	NA	NA	-0.01	-0.07 to 0.04	0.65	0	0.91	67	10
eturn to preinjury ctivity	64	57	4	1.23	0.97 to 1.56	0.09	0	0.47	0.14	-0.01 to 0.29	0.08	0	0.54	-23	

*RR = risk ratio, RD = risk difference, MIS = minimally invasive surgery, ES = effect size, CI = confidence interval, RRR = relative risk reduction, NNT = number needed to treat, and NA = not assessed. Values in bold are significant.

	Nia	of			Mean Di	fference		
		o. of ients					Heter	ogeneity
Outcome	MIS	Open	No. of Studies	ES	95% CI	P Value	l² (%)	P Valu
AOFAS	39	35	2	-2.74	-5.19 to -0.29	0.03	57	0.13
Operating time (min)	53	53	2	-18.98	-26.82 to -11.14	0.00001	86	0.007
Time to return to work (wk)	58	55	3	-0.07	-2.04 to 1.91	0.95	78	0.01
Ankle range of motion (°)	69	73	3	3.95	-6.52 to 14.43	0.46	89	0.000

complications, defined as reruptures, superficial or deep infections, delayed wound-healing, adhesions, keloid formation, sural nerve problems, residual pain/tendinitis, ankle stiffness, and deep venous thrombosis. The data obtained at the final follow-up were extracted for the analysis when multiple follow-up evaluations had been performed. Two authors (M.M. and E.S.) separately extracted all of the data. Discrepancies were resolved by the critical judgment of the first author (A.G.) after discussion.

Complications

a. Reruptures

Study or Subgroup	Weight	Risk Difference IV, Fixed, 95% CI			Risk Difference V, Fixed, 95% 0		
Aktas	12.3%	0.00 [-0.09, 0.09]					
Avina Valencia	23.2%	0.00 [-0.07, 0.07]			_ + _		
Gigante	12.3%	0.00 [-0.09, 0.09]			-		
Karabinas	8.7%	0.00 [-0.11, 0.11]			_		
Kolodziej	19.2%	0.00 [-0.07, 0.07]			_ _		
Lim	10.4%	-0.03 [-0.13, 0.07]					
Majewski	7.7%	-0.01 [-0.12, 0.11]			_		
Schroeder	6.2%	0.00 [-0.13, 0.13]					
Total (95% CI)	100.0%	0.00 [-0.04, 0.03]			•		
Total events							
Heterogeneity: Chi ² =	0.31, df = 1	7 (P = 1.00); l ² = 0%	0.5	0.05	<u> </u>	0.05	
Test for overall effect:	Z = 0.22 (I	P = 0.83)	-0.5	-0.25	MIS Open	0.25	0.5

b. Total Other Complications

Study or Subgroup	Weight	Risk Ratio M-H, Fixed, 95% Cl	Risk Ratio M-H, Fixed, 95% Cl
Aktas	16.1%	0.09 [0.01, 0.64]	
Avina Valencia	27.8%	0.05 [0.01, 0.37]	
Gigante	3.7%	0.20 [0.01, 3.92]	
Karabinas	2.4%	0.27 [0.01, 6.11]	
Kolodziej	8.3%	0.19 [0.02, 1.45]	
Lim	14.6%	0.10 [0.01, 0.74]	
Majewski	23.3%	0.41 [0.21, 0.82]	
Schroeder	3.9%	0.17 [0.01, 3.34]	
Total (95% CI)	100.0%	0.18 [0.10, 0.31]	•
Total events			
Heterogeneity: Chi ² =	8.11, df = 7	7 (P = 0.32); I ² = 14%	0.001 0.1 1 10 1000
Test for overall effect:	Z = 6.09 (F	P < 0.00001)	MIS Open

Fig. 3

Forest plots showing the rates of reruptures (Fig. 3-A) and total other complications (Fig. 3-B) in patients treated with minimally invasive surgery (MIS) or open repair.

THE JOURNAL OF BONE & JOINT SURGERY • JBJS.ORG VOLUME 100-A • NUMBER 22 • NOVEMBER 21, 2018 MINIMALLY INVASIVE VERSUS OPEN REPAIR FOR ACUTE ACHILLES TENDON RUPTURE

Complications

a. Sural Nerve Problems

		Risk Difference		1	Risk Differenc	е	
Study or Subgroup	Weight	M-H, Fixed, 95% Cl		M	-H, Fixed, 95%	CI	
Aktas	14.4%	0.00 [-0.09, 0.09]					
Gigante	14.4%	0.00 [-0.09, 0.09]					
Karabinas	12.1%	0.00 [-0.11, 0.11]			-		
Kolodziej	18.3%	0.00 [-0.07, 0.07]			_ + _		
Lim	23.8%	0.03 [-0.05, 0.11]			- -		
Majewski	16.9%	0.00 [-0.08, 0.08]			-		
Total (95% CI)	100.0%	0.01 [-0.03, 0.04]			•		
Total events							
Heterogeneity: Chi ² =	0.45, df = 5	5 (P = 0.99); l ² = 0%	-0.5	-0.25	<u> </u>	0.25	0.5
Test for overall effect:	Z = 0.38 (F	P = 0.70)	-0.5	-0.25	MIS Open	0.25	0.5

b. Superficial Infections

		Risk Difference	Risk Difference
Study or Subgroup	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Aktas	11.1%	-0.15 [-0.32, 0.02]	
Avina Valencia	15.5%	0.00 [-0.07, 0.07]	
Gigante	11.1%	0.00 [-0.09, 0.09]	_
Karabinas	9.3%	0.00 [-0.11, 0.11]	
Kolodziej	14.1%	-0.03 [-0.16, 0.09]	
Lim	18.3%	-0.18 [-0.32, -0.04]	
Majewski	13.0%	-0.09 [-0.23, 0.05]	
Schroeder	7.7%	0.00 [-0.13, 0.13]	
Total (95% CI)	100.0%	-0.07 [-0.11, -0.02]	•
Total events			
Heterogeneity: Chi ² =	12.14, df =	7 (P = 0.10); I ² = 42%	
Test for overall effect:			-0.5 -0.25 0 0.25 0.5 MIS Open

c.Deep Infections

o		Risk Difference			Risk Difference		
Study or Subgroup	Weight	M-H, Fixed, 95% Cl		M	-H, Fixed, 95%	CI	
Aktas	11.1%	-0.05 [-0.18, 0.08]		÷.			
Avina Valencia	15.5%	0.00 [-0.07, 0.07]			- †		
Gigante	11.1%	0.00 [-0.09, 0.09]			- +		
Karabinas	9.3%	0.00 [-0.11, 0.11]			-+		
Kolodziej	14.1%	-0.04 [-0.14, 0.06]					
Lim	18.3%	-0.03 [-0.11, 0.05]					
Majewski	13.0%	0.00 [-0.08, 0.08]			_ + _		
Schroeder	7.7%	0.00 [-0.13, 0.13]					
Total (95% CI)	100.0%	-0.02 [-0.05, 0.02]			•		
Total events							
Heterogeneity: Chi ² =	1.20, df = 7	' (P = 0.99); l ² = 0%	105	0.05	<u> </u>	0.05	0.5
Test for overall effect:	Z = 0.91 (F	P = 0.36)	-0.5	-0.25	MIS Open	0.25	0.5

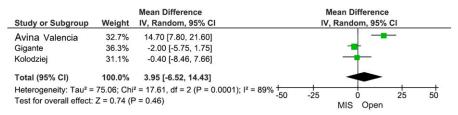
Fig. 4

Forest plots showing the rates of sural nerve problems (Fig. 4-A), superficial infections (Fig. 4-B), and deep infections (Fig. 4-C) in patients treated with minimally invasive surgery (MIS) or open repair.

Assessment of Risk of Bias and Quality of Evidence

The risk of bias was categorized as high, low, or unclear according to the standardized Cochrane Risk of Bias Tool¹⁸. The overall quality of evidence for each outcome was graded as high, moderate, low, or very low on the basis of the study design, risk of bias, inconsistency, indirectness, imprecision, and publication bias, according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines¹⁹. The risk of bias and the quality of evidence according to the GRADE guidelines were based on a consensus by 2 authors (A.G. and THE JOURNAL OF BONE & JOINT SURGERY . JBJS.ORG VOLUME 100-A . NUMBER 22 . NOVEMBER 21, 2018 MINIMALLY INVASIVE VERSUS OPEN REPAIR FOR ACUTE ACHILLES TENDON RUPTURE

Functional Outcomes


a. AOFAS

	Mean Difference				ean Differer	nce	
Study or Subgroup	Weight	IV, Random, 95% CI		IV,	Random, 95	5% CI	
Aktas	50.3%	-1.50 [-3.75, 0.75]					
Karabinas	49.7%	-4.00 [-6.27, -1.73]		-	-		
Total (95% CI)	100.0%	-2.74 [-5.19, -0.29]					
		= 2.35, df = 1 (P = 0.13); l ² = 57%	+ -10	-5	0	5	10
Test for overall effect:	Z = 2.19 (F	= 0.03)			MIS Ope	n	

b. Good \ Excellent Outcomes

		Risk Ratio	Risk Ratio
Study or Subgroup	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
Karabinas	22.9%	1.08 [0.91, 1.28]	
Lim	39.1%	1.22 [1.03, 1.44]	
Majewski	25.7%	1.14 [0.87, 1.49]	
Schroeder	12.2%	1.30 [0.79, 2.14]	
Total (95% CI)	100.0%	1.18 [1.04, 1.33]	•
Total events			
Heterogeneity: Chi ² = Test for overall effect:			2 1.5 1 0.7 0.5 MIS Open

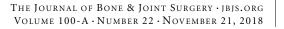
c. Ankle Range Of Motion

Fig. 5

Forest plots showing the mean difference in AOFAS score (**Fig. 5-A**), rates of patients rating the procedure as excellent or good (**Fig. 5-B**), and mean difference in ankle range of motion in degrees (**Fig. 5-C**) after minimally invasive surgery (MIS) or open repair.

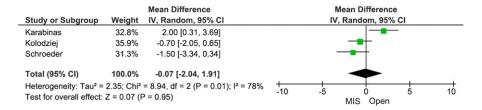
S.Z.). The intervention of a third reviewer was not needed because the authors reached consensus for all of the items after discussion.

Statistical Analysis

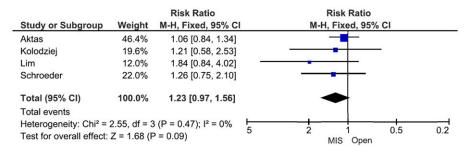

The meta-analysis was performed using RevMan, version 5.0.18.33 (Cochrane Collaboration). Continuous variables were extracted and analyzed as the mean and standard deviation (SD). The corresponding author of the article was contacted and asked to provide the data if the SD was not reported. In the event of no response, the SD was calculated from the available data, according to a previously validated formula¹⁸: (higher range value – lower range value)/4. If the SD could not be calculated using this approach, the highest SD was used. The mean difference and 95% confidence interval (CI) were calculated for continuous variables. The risk difference (RD), the risk ratio (RR), the relative risk reduction (RRR), and the number needed to treat

(NNT) were calculated for dichotomous variables. We tested for heterogeneity using the chi square and Higgins I² tests¹⁸. According to Cochrane guidelines¹⁸, in cases with I² of <30% and a chi square result with a p value of >0.05, heterogeneity was considered low and therefore a fixed-effect meta-analysis was performed. In cases of high heterogeneity—with I² of >50% or a chi square with a p value of <0.05, or both—a Mantel-Haenszel random-effect model was used. In cases of moderate heterogeneity—with I² between 30% and 50% and a chi square with a p value of >0.05—both fixed and random-effect models were used. A p value of <0.05 was considered significant in all analyses.

Results


Article Selection

A total of 643 articles were screened and, after application of inclusion and exclusion criteria, 8 studies^{9,10,12,20-24} were included in the final analysis (Fig. 1).



Return to Activity

a. Time to return to work (months)

b. Return to pre-injury activity (%)

Fig. 6

Forest plots showing the time (months) to return to work (Fig. 6-A) and the rate of patients returning to the same preinjury activity (Fig. 6-B) after minimally invasive surgery (MIS) or open repair.

Study Characteristics

A total of 182 patients were treated with minimally invasive surgery and 176 patients, with open repair. The mean age ranged from 37.7 to 44.8 years in the minimally invasive surgery group and from 36.9 to 47.1 years in the open repair group. The mean follow-up time in the included studies ranged from 4 to 30 months (Table I).

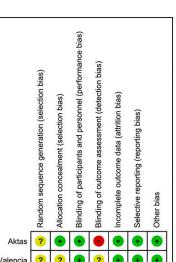
Different surgical techniques, postoperative care, and rehabilitation protocols were used both for minimally invasive surgery and open repair (Table II). The operating time was reported in 2 studies, and the random-effect meta-analysis revealed a significantly shorter time for the minimally invasive surgery group, with a mean difference of -18.98 minutes (95% CI = -11.14 to -26.82 minutes, p = 0.00001) (Fig. 2). The pooled data for each individual outcome are summarized in Tables III and IV.

Reruptures

The rerupture rate ranged from 0% to 4% for the patients treated with minimally invasive surgery and from 0% to 6% in the open repair group. The fixed-effect meta-analysis revealed no significant difference in terms of the risk of rerupture (RR = 0.64, p = 0.62, and RD = 0.00, p = 0.83) (Fig. 3-A).

Other Complications

The prevalence of ≥ 1 types of other complications apart from rerupture was reported in all of the studies. The fixed-effect metaanalysis for overall other complications revealed a significantly decreased RR (0.18, p = 0.00001) and RD (-0.31, p = 0.00001) for the patients treated with minimally invasive surgery (Fig. 3-B). This resulted in an RRR of 82% and an NNT of 4 patients. Specifically, wound complications had a significantly decreased RR (0.13, p = 0.00001) and RD (-0.16, p = 0.0008) in favor of minimally invasive surgery, resulting in an RRR of 87% and an NNT of 7 patients. Complications such as sural nerve problems (Fig. 4-A), pain/tendinitis, and deep venous thrombosis were similar between minimally invasive surgery and open repair, while ankle stiffness was significantly less common after minimally invasive surgery (Table III).


Regarding the specific wound complications, the overall RR (0.15, p = 0.0009) and the RD (-0.11, p = 0.0001) for wound infection were decreased after minimally invasive surgery in both the fixed and random-effect models, which were performed because of moderate heterogeneity (see Appendix). However, when deep and superficial infections were analyzed separately, only the superficial infections remained significantly decreased in the minimally invasive surgery group after both random and fixed-effect meta-analysis (see Appendix), with an RRR of 83%, while the RD with the NNT of 15 patients (Figs. 4-B and 4-C) was significant only using the fixed-effect model (see Appendix). Delayed wound-healing and the presence of adhesions were significantly less common in the minimally invasive surgery group.

Functional and Subjective Outcome Measurements

Random-effect meta-analysis revealed a significantly higher AOFAS score, by 2.74 points (p = 0.03), in the open repair group (Fig. 5-A). The fixed-effect meta-analysis of patients with good or excellent subjective results revealed an increased RR (1.18, p =

1976

THE JOURNAL OF BONE & JOINT SURGERY • JBJS.ORG VOLUME 100-A • NUMBER 22 • NOVEMBER 21, 2018 MINIMALLY INVASIVE VERSUS OPEN REPAIR FOR ACUTE ACHILLES TENDON RUPTURE

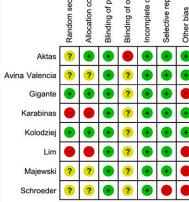


Fig. 7

Risk of bias in each study. Red circles = high risk, green circles = low risk, and yellow circles = unclear risk.

0.009) and RD (0.14, p = 0.007) in favor of minimally invasive surgery, with an RRR of 18% and an NNT of 8 patients (Fig. 5-B). Ankle range of motion (Fig. 5-C), time to return to work (Fig. 6-A), and return to preinjury activity level (Fig. 6-B) were similar between the 2 treatments.

Risk-of-Bias Assessment

All of the studies showed an unclear or high risk of bias in at least 1 domain of the Cochrane Risk of Bias Tool (Fig. 7). Selection bias was high due to the inconsistent reporting of randomization and concealment methods. Although the patients were not blinded to the allocated treatment, the risk of performance bias was considered low, since most of the outcomes evaluated were objective and not likely to be influenced by the patient's knowledge of a specific treatment. However, the risk of detection bias was considered to be high since most of the outcomes were assessed by investigators with inadequate or unknown blinding. The risks of attrition bias and reporting bias were considered low, since the dropout rates were minimal and the results of all of the outcome measures described in the methods section were reported in all but 1 study. Bias may also have been introduced by the fact that the authors of some studies did not perform an adequate evaluation of homogeneity between the treatment groups (Fig. 8).

Quality Assessment

The quality of evidence regarding the rerupture rate and most of the complications was low due to the high risk of selection and detection bias. Moreover, the high heterogeneity (>50%) of the RD and the limited number of patients evaluated, in relation to the absolute risk of a specific outcome, further limited the quality of evidence. The quality of evidence for the reduced rates of total and superficial wound infections in the minimally invasive surgery group was classified as moderate (the highest quality of evidence among the investigated outcomes) since its statistical heterogeneity was low and the absolute risk was relatively high in relation to the sample size (Fig. 9). The quality of evidence for the functional and subjective outcomes was very low due to a substantial risk of bias, heterogeneity, indirectness of outcome reporting, and the evaluation of a limited number of patients. The return to activity was not investigated in a homogeneous population regarding activity level, and no information on the patients' professions was provided (Fig. 10).

Discussion

We believe that the present study represents the most comprehensive investigation comparing the results of minimally invasive surgery and open repair of Achilles tendon rupture to date because it includes the largest number of RCTs available in the literature. Because our study was based on the synthesis of data from several individual studies, we were able to investigate

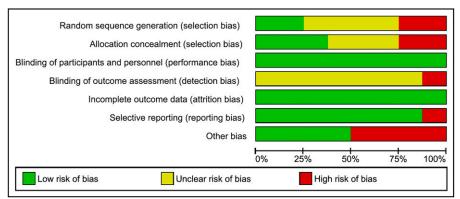


Fig. 8

Summary of the risk of bias across the included studies.

THE JOURNAL OF BONE & JOINT SURGERY · JBJS.ORG VOLUME 100-A · NUMBER 22 · NOVEMBER 21, 2018 MINIMALLY INVASIVE VERSUS OPEN REPAIR FOR ACUTE ACHILLES TENDON RUPTURE

Minimally Invasive Surgery compared to Open surgery for Acute Achilles Tendon Rupture								
Outcomes	№ of participants (studies) Follow-up	Quality of the evidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects				
				Risk with Open surgery	Risk difference with Minimally Invasive Surgery			
Reruptures assessed with: Clinical evaluation	362 (8 RCTs)	⊕⊕OO LOW ^{a,b}	RR 0.64 (0.11 to 3.77)	17 per 1.000	6 fewer per 1,000 (15 fewer to 47 more)			
Total Other Complications assessed with: Clinical evaluation	362 (8 RCTs)	⊕⊕⊖O LOW ^{a,c}	RR 0.18 (0.10 to 0.31)	371 per 1.000	293 fewer per 1,000 (334 fewer to 222 fewer)			
Wound Complications assessed with: Clinical evaluation	362 (8 RCTs)	⊕⊕OO LOW ^{a,c}	RR 0.13 (0.05 to 0.35)	202 per 1.000	176 fewer per 1,000 (192 fewer to 131 fewer)			
Infections assessed with: Clinical evaluation	362 (8 RCTs)	HODERATE a	RR 0.15 (0.05 to 0.46)	112 per 1.000	96 fewer per 1,000 (107 fewer to 61 fewer)			
Superficial Infections assessed with: Clinical evaluation	362 (8 RCTs)	HODERATE a	RR 0.17 (0.05 to 0.64)	73 per 1.000	61 fewer per 1,000 (69 fewer to 26 fewer)			
Deep Infections assessed with: Clinical evaluation	362 (8 RCTs)	⊕⊕OO LOW ^{a,b}	RR 0.35 (0.06 to 2.14)	17 per 1.000	11 fewer per 1,000 (16 fewer to 19 more)			
Delayed Wound Healing assessed with: Clinical evaluation	194 (4 RCTs)	⊕⊕OO LOW ^{a,b}	RR 0.22 (0.05 to 1.01)	72 per 1.000	56 fewer per 1,000 (69 fewer to 1 more)			
Adhesions assessed with: Clinical evaluation	162 (3 RCTs)	⊕⊕OO LOW ^{a,b}	RR 0.18 (0.04 to 0.79)	123 per 1.000	101 fewer per 1,000 (119 fewer to 26 fewer)			
Keloids assessed with: Clinical evaluation	117 (2 RCTs)	⊕⊕OO LOW ^{a,b}	RR 0.27 (0.03 to 2.33)	50 per 1.000	37 fewer per 1,000 (49 fewer to 67 more)			
Sural Nerve Problems assessed with: Clinical evaluation	278 (6 RCTs)	⊕⊕OO LOW ^{a,b}	RR 3.00 (0.13 to 71.07)	0 per 1.000	0 fewer per 1,000 (0 fewer to 0 fewer)			
Pain\Tendinitis assessed with: Clinical evaluation	228 (5 RCTs)	⊕OOO VERY LOW a,b,c	RR 0.52 (0.11 to 2.54)	125 per 1,000	60 fewer per 1,000 (111 fewer to 193 more)			
Ankle Stiffness assessed with: Clinical evaluation	87 (2 RCTs)	OOO VERY LOW a,b,c	RR 0.33 (0.11 to 1.01)	214 per 1,000	144 fewer per 1,000 (191 fewer to 2 more)			
Deep Venous Thromboembolism assessed with: Clinical evaluation	155 (4 RCTs)	⊕⊕OO LOW ^{a,b}	RR 0.33 (0.01 to 7.72)	13 per 1.000	9 fewer per 1,000 (13 fewer to 90 more)			

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; MD: Mean difference

GRADE Working Group grades of evidence High quality: We are very confident that the true effect lies close to that of the estimate of the effect Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect.

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

a. Selection and detection bias due to allocation concealment and non-blinded outcome assessors
b. Limited number of patients included for this outcome with respect to the absolute risk of each outcome
c. Heterogeneity >50% of Risk Difference

Summary of the quality of evidence according to the GRADE guidelines for the complications after minimally invasive surgery or open repair.

THE JOURNAL OF BONE & JOINT SURGERY · IBIS.ORG VOLUME 100-A · NUMBER 22 · NOVEMBER 21, 2018 MINIMALLY INVASIVE VERSUS OPEN REPAIR FOR ACUTE ACHILLES TENDON RUPTURE

Outcomes	№ of participants (studies) Follow-up		Relative effect (95% CI)	Anticipated absolute effects	
				Risk with Open surgery	Risk difference with Minimally Invasive Surgery
Return to pre-injury activity assessed with: patient interview	121 (4 RCTs)	OCO VERY LOW a,b,c	RR 1.23 (0.97 to 1.56)	614 per 1,000	141 more per 1,000 (18 fewer to 344 more)
Good\Excellent Outcome assessed with: Subjective report by patients	175 (4 RCTs)	OCO VERY LOW a,c,d	RR 1.18 (1.04 to 1.33)	795 per 1,000	143 more per 1,000 (32 more to 262 more)
AOFAS assessed with: Subjective score administered to the patient	74 (2 RCTs)	OOO VERY LOW a,e,f	-		MD 2.74 points lower (5.19 lower to 0.29 lower)
Surgery Time assessed with: Medical records	106 (2 RCTs)	⊕⊕OO LOW ^{a,e,f,g}			MD 18.98 minutes lower (26.82 lower to 11.14 lower)
Return to work assessed with: Patient interview	113 (3 RCTs)	URY LOW	27 - 1		MD 0.07 months lower (2.04 lower to 1.91 higher)
Ankle Range Of Motion assessed with: Direct measurement	142 (3 RCTs)	⊕OOO VERY LOW a,e,f	-		MD 3.95 degrees more (6.52 fewer to 14.43 more)

Minimally Invasive Surgery compared to Open surgery for Acute Achilles Tendon Buntur

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; MD: Mean difference

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the

estimate of the effect

Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

a. Selection and detection bias due to allocation concealment and non-blinded outcome assessors

b. Not homogeneous populations of athletes

c. Limited number of patients included for this outcome with respect to the absolute risk of each outcome

- d. Indirect subjective measure of overall outcome
- e. Heterogeneity >50% of Risk Difference f. Limited number of patients included for this outcome respect to the mean difference

g. Great difference between MIS and Open repair h. Works not reported

Fig. 10

Summary of the quality of evidence according to the GRADE guidelines for the functional and subjective outcomes and surgical time after minimally invasive surgery or open repair.

outcomes that had previously been sparsely reported, such as time to return to work, return to preinjury level, and ankle range of motion. The main finding of the present meta-analysis, which included more than 350 patients, was a reduced risk of postoperative complications, in particular superficial wound infections, when minimally invasive surgery was performed. Minimally invasive surgery was also associated with a lower frequency of delayed wound-healing and scar adhesions, whereas other factors such as the rerupture rate and return to preinjury activity and work were not affected by the surgical technique.

On the basis of the NNT calculated in this meta-analysis, it was estimated that 1 wound infection could be avoided for every 10 minimally invasive surgery procedures performed instead of open repair for Achilles tendon rupture, supporting the results of other meta-analyses^{4,13}.

The risk of the overall other complications apart from rerupture was significantly decreased in the minimally invasive surgery group and, according to the estimated NNT, 1 complication for every 4 Achilles tendon ruptures could be avoided if minimally invasive surgery was selected rather than open repair. However, there is a concern about injury to the sural nerve when performing minimally invasive surgery. Sural nerve entrapment was reported to occur in up to 27% of minimally invasive surgical procedures performed utilizing minimally invasive devices,

THE JOURNAL OF BONE & JOINT SURGERY · JBJS.ORG VOLUME 100-A · NUMBER 22 · NOVEMBER 21, 2018 MINIMALLY INVASIVE VERSUS OPEN REPAIR FOR ACUTE ACHILLES TENDON RUPTURE

such as the Achillon system (Integra), in cadaveric studies^{25,26}. Moreover, the technique described by Ma and Griffith has been associated with rates of postoperative sural nerve problems of up to 60% in clinical settings²⁷⁻²⁹. However, the studies included in our meta-analysis demonstrated a low rate of sural nerve complications and no significant difference between minimally invasive surgery and open repair in this regard. Only 1 of the included studies²² explored avoidance of damage to the sural nerve when applying the Ma and Griffith technique for minimally invasive surgery. In 4 of the included studies^{9,20,21,23}, the minimally invasive surgery was done using the Achillon or the Tenolig (FH Orthopedics) device, both of which have been associated with a low rate of sural nerve damage in clinical series^{30,31}. Cadaveric studies have also indicated that it is possible to avoid sural nerve entrapment by applying external rotation of the Achillon device during Achilles tendon repair²⁵. The risk of damage to the sural nerve may therefore be considerably affected by the surgical technique and the surgeon's skill. It is noteworthy that the authors of a recent meta-analysis¹⁵ reported an approximately 3.5-fold, significantly increased risk of sural nerve injury during minimally invasive surgery compared with open repair. However, the study was not restricted to RCTs and, because most of the sural nerve injuries were reported in retrospective comparative studies³²⁻³⁴, there is concern about a potential methodological bias in relation to these results.

The operating time for minimally invasive surgery was significantly shorter than that for open repair, but the quality of evidence relating to these data was limited because only 2 studies provided this information. The functional outcomes are comparable between the 2 procedures, as the 3-point difference in AO-FAS scores does not appear to be clinically relevant; moreover, the AOFAS has been criticized for being only partially validated despite being commonly applied^{23,35,36}. Patients who underwent minimally invasive surgery had a significantly higher probability of reporting a good or excellent outcome. Authors of another metaanalysis who reported a similar finding³⁷ concluded that the reasons for the superior patient satisfaction in the minimally invasive surgery group remains unknown, but it is possible that a reduced incidence of postoperative complications is one contributing factor. The 2 groups were found to have comparable results in terms of ankle range of motion, time to return to work, return to preinjury activity level, and rerupture rate. Therefore, functional performance testing would have been desirable to better understand factors associated with the superior patientreported outcome in the minimally invasive surgery group, but this has not as yet been sufficiently investigated.

This meta-analysis has several limitations. Only acute Achilles tendon ruptures were investigated, preventing any conclusions about the treatment of chronic ruptures. Moreover, we did not include studies with special emphasis on Achilles tendon rupture in the athletic population and the return to sports. It has previously been reported that 78% of patients return to sports, after a mean of 18.1 weeks, following percutaneous Achilles tendon repair³⁸. However, early tendon elongation has been reported in cadaveric models exposed to cyclic loading following minimally invasive surgery⁸, which indicates

the importance of vigilant care when managing professional athletes requiring accelerated rehabilitation. Finally, because of strict inclusion criteria, the original studies were restricted to healthy patients who were <60 years of age; thus, we could not determine whether minimally invasive surgery decreased complications in older patients with comorbidities or, conversely, increased the risk of rerupture in such patients because of the less solid construction obtained with minimally invasive surgery. Although promising results have been reported with minimally invasive surgery in this complex population³⁹, nonoperative treatment or open repair should be considered for this group.

This meta-analysis generally demonstrated a considerable risk of bias in the literature and methodological limitations of the assessment of the results of treatment of Achilles tendon rupture, which negatively affect the quality of the results presented in this study.

In conclusion, there was a significantly decreased risk of postoperative complications, especially wound infections, when acute Achilles tendon rupture was treated with minimally invasive surgery rather than open repair. Additionally, patients were significantly more likely to report a good or excellent subjective outcome after minimally invasive surgery. The techniques were comparable in terms of rerupture rate, ankle range of motion, time to return to work, and return to preinjury activity level. The evidence for these findings was, however, associated with high heterogeneity and a considerable risk of bias, thus requiring additional high-quality RCTs.

Appendix

A table showing the results of the random-effect metaanalysis of outcomes with moderate heterogeneity is available with the online version of this article as a data supplement at jbjs.org (<u>http://links.lww.com/JBJS/E946</u>). ■

Alberto Grassi, MD^{1,2} Annunziato Amendola, MD³ Kristian Samuelsson, MD⁴ Eleonor Svantesson, MD⁴ Matteo Romagnoli, MD² Alice Bondi, MD² Massimiliano Mosca, MD² Stefano Zaffagnini, Prof^{1,2}

¹Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy

²II Clinica Ortopedica e Traumatologica (A.G., M.R., M.M., and S.Z.) and Dipartimento Rizzoli Sicilia (A.B.), IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy

³Michael W. Krzyzewski Human Performance Laboratory, Department of Orthopaedic Surgery, Duke University, Durham, North Carolina

⁴Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

E-mail address for A. Grassi: alberto.grassi3@studio.unibo.it

The Journal of Bone & Joint Surgery · JBJS.org Volume 100-A · Number 22 · November 21, 2018 MINIMALLY INVASIVE VERSUS OPEN REPAIR FOR ACUTE ACHILLES TENDON RUPTURE

ORCID iD for A. Grassi: <u>0000-0003-4236-1798</u> ORCID iD for A. Amendola: <u>0000-0003-3958-2223</u> ORCID iD for K. Samuelsson: <u>0000-0001-5383-3370</u> ORCID iD for E. Svantesson: <u>0000-0002-6669-5277</u> ORCID iD for M. Romagnoli: <u>0000-0003-4004-3833</u> ORCID iD for A. Bondi: <u>0000-0002-7197-2179</u> ORCID iD for M. Mosca: <u>0000-0002-3283-8735</u> ORCID iD for S. Zaffagnini: <u>0000-0002-2941-1407</u>

References

1. Longo UG, Ronga M, Maffulli N. Acute ruptures of the Achilles tendon. Sports Med Arthrosc Rev. 2009 Jun;17(2):127-38.

2. Suchak AA, Bostick G, Reid D, Blitz S, Jomha N. The incidence of Achilles tendon ruptures in Edmonton, Canada. Foot Ankle Int. 2005 Nov;26(11):932-6.

3. Soroceanu A, Sidhwa F, Aarabi S, Kaufman A, Glazebrook M. Surgical versus nonsurgical treatment of acute Achilles tendon rupture: a meta-analysis of randomized trials. J Bone Joint Surg Am. 2012 Dec 5;94(23):2136-43.

4. Wu Y, Lin L, Li H, Zhao Y, Liu L, Jia Z, Wang D, He Q, Ruan D. Is surgical intervention more effective than non-surgical treatment for acute Achilles tendon rupture? A systematic review of overlapping meta-analyses. Int J Surg. 2016 Dec; 36(Pt A):305-11. Epub 2016 Nov 10.

5. Jiang N, Wang B, Chen A, Dong F, Yu B. Operative versus nonoperative treatment for acute Achilles tendon rupture: a meta-analysis based on current evidence. Int Orthop. 2012 Apr;36(4):765-73. Epub 2011 Dec 9.

6. Olsson N, Silbernagel KG, Eriksson BI, Sansone M, Brorsson A, Nilsson-Helander K, Karlsson J. Stable surgical repair with accelerated rehabilitation versus nonsurgical treatment for acute Achilles tendon ruptures: a randomized controlled study. Am J Sports Med. 2013 Dec;41(12):2867-76. Epub 2013 Sep 6.

7. Wilkins R, Bisson LJ. Operative versus nonoperative management of acute Achilles tendon ruptures: a quantitative systematic review of randomized controlled trials. Am J Sports Med. 2012 Sep;40(9):2154-60. Epub 2012 Jul 16.

8. Clanton TO, Haytmanek CT, Williams BT, Civitarese DM, Turnbull TL, Massey MB, Wijdicks CA, LaPrade RF. A biomechanical comparison of an open repair and 3 minimally invasive percutaneous Achilles tendon repair techniques during a simulated, progressive rehabilitation protocol. Am J Sports Med. 2015 Aug;43(8): 1957-64. Epub 2015 Jun 10.

9. Gigante A, Moschini A, Verdenelli A, Del Torto M, Ulisse S, de Palma L. Open versus percutaneous repair in the treatment of acute Achilles tendon rupture: a randomized prospective study. Knee Surg Sports Traumatol Arthrosc. 2008 Feb; 16(2):204-9. Epub 2007 Dec 8.

10. Lim J, Dalal R, Waseem M. Percutaneous vs. open repair of the ruptured Achilles tendon—a prospective randomized controlled study. Foot Ankle Int. 2001 Jul;22(7): 559-68.

Maes R, Copin G, Averous C. Is percutaneous repair of the Achilles tendon a safe technique? A study of 124 cases. Acta Orthop Belg. 2006 Apr;72(2):179-83.
Majewski M, Rickert M, Steinbrück K. [Achilles tendon rupture. A prospective study assessing various treatment possibilities]. [German.]. Orthopade. 2000 Jul; 29(7):670-6.

13. Li Q, Wang C, Huo Y, Jia Z, Wang X. Minimally invasive versus open surgery for acute Achilles tendon rupture: a systematic review of overlapping meta-analyses. J Orthop Surg Res. 2016 Jun 6;11(1):65.

14. Khan RJ, Carey Smith RL. Surgical interventions for treating acute Achilles tendon ruptures. Cochrane Database Syst Rev. 2010 Sep 8;9:CD003674.

 $\begin{array}{l} \textbf{15.} \mbox{ Yang B, Liu Y, Kan S, Zhang D, Xu H, Liu F, Ning G, Feng S. Outcomes and complications of percutaneous versus open repair of acute Achilles tendon rupture: a meta-analysis. Int J Surg. 2017 Apr;40:178-86. Epub 2017 Mar 11. \end{array}$

16. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009 Jul 21;339:b2535.

17. Kitaoka HB, Alexander IJ, Adelaar RS, Nunley JA, Myerson MS, Sanders M. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int. 1994 Jul;15(7):349-53.

18. Higgins JPT, Green S. Cochrane handbook for systematic reviews of intervention version 5.1.0: the Cochrane Collaboration; 2011. http://handbook.cochrane.org. Accessed 2018 Mar 6.

19. Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, Guyatt GH. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011 Apr;64(4):401-6. Epub 2011 Jan 5.

20. Aktas S, Kocaoglu B. Open versus minimal invasive repair with Achillon device. Foot Ankle Int. 2009 May;30(5):391-7.

21. Aviña Valencia JA, Guillén Alcalá MA. [Repair of acute Achilles tendon rupture. Comparative study of two surgical techniques]. [Spanish.]. Acta Ortop Mex. 2009 May-Jun;23(3):125-9.

22. Karabinas PK, Benetos IS, Lampropoulou-Adamidou K, Romoudis P, Mavrogenis AF, Vlamis J. Percutaneous versus open repair of acute Achilles tendon ruptures. Eur J Orthop Surg Traumatol. 2014 May;24(4):607-13. Epub 2013 Nov 5.

23. Kołodziej L, Bohatyrewicz A, Kromuszczyńska J, Jezierski J, Biedroń M. Efficacy and complications of open and minimally invasive surgery in acute Achilles tendon rupture: a prospective randomised clinical study—preliminary report. Int Orthop. 2013 Apr;37(4):625-9. Epub 2012 Dec 19.

24. Schroeder D, Lehmann M, Steinbrueck K. Treatment of acute Achilles tendon ruptures: open vs. percutaneous repair vs. conservative treatment. A prospective randomized study. Orthop Trans. 1997;21:1228.

25. Aibinder WR, Patel A, Arnouk J, El-Gendi H, Korshunov Y, Mitgang J, Uribe J. The rate of sural nerve violation using the Achillon device: a cadaveric study. Foot Ankle Int. 2013 Jun;34(6):870-5. Epub 2013 Jan 31.

26. Porter KJ, Robati S, Karia P, Portet M, Szarko M, Amin A. An anatomical and cadaveric study examining the risk of sural nerve injury in percutaneous Achilles tendon repair using the Achillon device. Foot Ankle Surg. 2014 Jun;20(2):90-3. Epub 2013 Dec 6.

27. Ma GW, Griffith TG. Percutaneous repair of acute closed ruptured Achilles tendon: a new technique. Clin Orthop Relat Res. 1977 Oct;(128):247-55.

28. Klein W, Lang DM, Saleh M. The use of the Ma-Griffith technique for percutaneous repair of fresh ruptured tendo Achillis. Chir Organi Mov. 1991 Jul-Sep;76(3): 223-8.

29. Maffulli N. Rupture of the Achilles tendon. J Bone Joint Surg Am. 1999 Jul;81(7): 1019-36.

30. Daghino W, Enrietti E, Sprio AE, di Prun NB, Berta GN, Massè A. Subcutaneous Achilles tendon rupture: a comparison between open technique and mini-invasive tenorrhaphy with Achillon[®]suture system. Injury. 2016 Nov;47(11):2591-5. Epub 2016 Sep 6.

31. Lacoste S, Féron JM, Cherrier B. Percutaneous Tenolig(®) repair under intraoperative ultrasonography guidance in acute Achilles tendon rupture. Orthop Traumatol Surg Res. 2014 Dec;100(8):925-30. Epub 2014 Nov 13.

32. Cretnik A, Kosanovic M, Smrkolj V. Percutaneous versus open repair of the ruptured Achilles tendon: a comparative study. Am J Sports Med. 2005 Sep;33(9): 1369-79. Epub 2005 Apr 12.

33. Goren D, Ayalon M, Nyska M. Isokinetic strength and endurance after percutaneous and open surgical repair of Achilles tendon ruptures. Foot Ankle Int. 2005 Apr;26(4):286-90.

34. Haji A, Sahai A, Symes A, Vyas JK. Percutaneous versus open tendo Achillis repair. Foot Ankle Int. 2004 Apr;25(4):215-8.

35. Cöster MC, Rosengren BE, Bremander A, Brudin L, Karlsson MK. Comparison of the Self-reported Foot and Ankle Score (SEFAS) and the American Orthopedic Foot and Ankle Society score (AOFAS). Foot Ankle Int. 2014 Oct;35(10):1031-6. Epub 2014 Jul 11.

36. Hunt KJ, Hurwit D. Use of patient-reported outcome measures in foot and ankle research. J Bone Joint Surg Am. 2013 Aug 21;95(16):e118: 1-9).

37. McMahon SE, Smith TÖ, Hing CB. A meta-analysis of randomised controlled trials comparing conventional to minimally invasive approaches for repair of an Achilles tendon rupture. Foot Ankle Surg. 2011 Dec;17(4):211-7. Epub 2010 Dec 16.

38. Ververidis AN, Kalifis KG, Touzopoulos P, Drosos GI, Tilkeridis KE, Kazakos KI. Percutaneous repair of the Achilles tendon rupture in athletic population. J Orthop. 2015 Oct 9;13(1):57-61.

39. Cretnik A, Kosanović M, Smrkolj V. Percutaneous suturing of the ruptured Achilles tendon under local anesthesia. J Foot Ankle Surg. 2004 MarApr;43(2):72-81.